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Abstract-Analytical solutions are presented for a family of highly nonequilibrium (nearly frozen) 
boundary-layer flows of a four-component dissociated gas mixture around non-ablating bodies 
with either a completely catalytic or perfectly non-catalytic surface. Both self-similar and locally 
non-similar flows are studied for either recombination rate controlled or dissociation rate controlled 
situations. The nonequilibrium boundary-layer behavior, including the sensitivity to the various 
chemical kinetic data and transport property parameters, is considered in detail for highly cooled 
stagnation point flows on blunt bodies and hypersonic flows over sharp flat plates and slender cones. 
The accuracy of the local similarity approximation and use of nonequilibrium binary scaling laws are 

also examined for the plate and cone flows. 

NOMENCLATURE 

dissociation rate parameter, see 
equation (7); 
Chapman-Rubesin 

(PCLIPeCLe); 

parameter 

specific heat of mixture; 
boundary-layer stream function; 
reaction rate function, equations 
(9) and (10); 
averaged heat of formation for 
atoms, equation (15); 
h;,lCp Te ; 
heat of formation of i-th chemical 
specie ; 
integral function defined by equa- 
tion (29); 

reaction rate integrals; equations 
(30a) and (35b), respectively; 

7 exp (--SC ]fdT) dq; 

iwitching syibol, see equation (26); 
dissociation rate ; 
recombination rate; 
recombination rate constant 
@RI = k;, T “) ; 
Lewis number (Pr/Sc); 

-__._ 
t This paper was meoared under U.S. Air Force 

Contract No. AF 04(695)-269. 
$ Member, Technical Staff, Aerodynamics and Pro- 

pulsion Research Laboratories. 

exponent in the relation ue N XM 
for incompressible wedge flows; 
free stream Mach number; 
molecular weight of i-th chemical 
specie ; 
molecular weight of undissociated 
gas mixture ; 

Wi ; 
mole fraction of i-th chemical 
specie ; 
Prandtl number; 
static pressure; 
atmospheric pressure; 
characteristic dissociation pressure, 
see equation (7); 

(5/r) (dr/dQ; 
Heat-transfer rate function; 
heat-transfer rate; 
universal gas constant; 
local body radius in transverse 
plane ; 
Schmidt number ; 
dissociation rate parameter; equa- 
tion (7); 

function defined by equation (27); 
absolute temperature; 
characteristic dissociation tempera- 
ture for i-th atom; 
reference temperatures in reaction 
rate equations; 

1151 



G. R. INGER 

~32 Ei; Te; 
local velocity component parallel to 

body ; 
net rate of i-th specie mass destruc- 
tion due to chemical reaction; 
total reaction source term for 
atoms (= C &), equation (13); 

atoms 
co-ordinates parallel and normal to 
body, respectively; 

ala,; 
a&f,; 
total atom mass fraction (= x ai); 

at0lX 
mass fraction of i-th chemical specie ; 
parameter defined in equation (33) ; 
characteristic (flow-time/recom- 
bination-time) ratio, equation (12) ; 
characteristic (flow-time/dissocia- 
tion-time) ratio, equation (39); 
wedge or cone half-angle; 
body shape factor (= 0, two-dimen- 
sional, = 1, axisymmetric) ; 
boundary-layer similarity co- 
ordinate, equation (1); 
location of maximum temperature; 

TIT8 ; 
Toi /Te ; 

BP (7, Pr), 2 Pr [ (.f”‘)P’ [ 1 (J”‘)2-Pr dv] dq ; 

K, body-shape inviscid-flow factor 

[(x/0 d5/dxl; 
Xi, XL recombination rate parameters, 

equations (9) and (10) ; 

t5 coefficient of viscosity; 
$ _> boundary-layer similarity co-or- 

dinate, equation (1); 

P, density of mixture; 

*> boundary-layer stream function; 

WI, w, recombination rate temperature- 
dependence exponent. 

Subscripts 

a, denotes atom; 

B, denotes quantity based on Blasius 
velocity distribution ; 

e, local inviscid flow conditions at 
edge of boundary layer; 

F, chemically frozen boundary-layer 
solution ; 

denotes first-order nonequilibrium 
reaction effect (nearly frozen flow); 
i-th chemical specie (i = 1, 2, 3, 4 
herein) ; 
denotes molecule; 
conditions at body surface; 
free stream conditions. 

INTRODUCTION 

IT IS WELL established that appreciable depar- 
tures from chemical equilibrium will occur in the 
dissociated gas flow around blunt-nosed or 
slender, sharp-nosed reentry bodies at hyper- 
sonic flight speeds and high altitudes [l-7]. 
Consequently, there is considerable interest in 
the theory of nonequilibrium-dissociated laminar 
boundary-layer flows in connection with re- 
entry technology studies. A detailed theoretical 
knowledge of nonequilibrium-dissociated boun- 
dary-layer behavior is also required in funda- 
mental studies which seek to determine basic 
chemical kinetic and transport property data 
and to develop reliable devices for measurement 
of state properties in reacting gas flows (see, 
for example, [6-131 and the additional refer- 
ences cited in these papers). 

Mathematically, this problem is a difficult 
one to solve for body shapes and gases of 
practical interest. This is because the dissociation- 
recombination reaction rates occurring in either 
simple diatomic gases or more complex gas 
mixtures such as dissociated air introduce 
highly complicated, nonlinear source terms into 
the governing specie and energy conservation 
equations. Moreover, except in the special case 
of stagnation point flow on a symmetric body 
[14], these source terms cause the flow to be 
[locally non-similar,therebyrequiringthe solution 
to a set of nonlinear partial differential equations. 
As a consequence of these difficulties, analytical 
solutions for realistic situations have been com- 
paratively few. A number of early theoretical 
studies treated highly simplified physical models 
involving linearized chemical kinetics and 
idealized flow geometries [15-181. However, 
with the exception of some recent approximate 
closed form solutions relating to certain aspects 
of nonequilibrium flat plate and stagnation 
point boundary layers in diatomic gases [7, 
19-231, theoretical studies of the nonlinear 
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problem have been carried out on digital com- 
puters by a variety of numerical methods 
114, 24-301. Nevertheless, further investigations 
of an analytical nature for flow situations of 
practical interest will undoubtedly be useful at 
this stage of development to further illuminate 
the underlying physical behavior and to establish 
the functional relationships between nonequili- 
brium boundary-layer properties and the im- 
portant thermochemical parameters. 

Accordingly, this paper presents a study of 
analytical solutions to the laminar boundary- 
layer equations for highly nonequilibrium dis- 
sociated flows over non-ablating bodies with 
either a completely catalytic or perfectly 
non-catalytic surface. These sotutions are ob- 
tained by a perturbation method wherein small 
local departures from a completely frozen 
boundary-layer flow are considered. This 
approach, while restricted to a small portion of 
the entire range of nonequilibrium-reaction 
effects between the extremes of completely 
frozen and completely equilibrium flow behavior, 
offers several significant advantages. First, it 
permits analytical solutions to be obtained, 
since the equations governing the nonequilibrium 
effects become linear. Second, the method need 
not place any restriction on the complexity of the 
reaction rates or the number of components 
invoIved, so that a realistic chemical model of 
either a diatomic or multicomponent gas such as 
air can be used. Third, the reaction rate effects 
need not be self-similar, so that a fairly wide 
class of flow configurations can be studied in a 
unified way. Also, it should be noted that the 
assumed situation of small gas phase reaction 
rates can in fact hold over a significant portion 
of sharp-nosed slender bodies at sufficiently low 
ambient densities. Moreover, in the general case, 
these nearly frozen flow solutions can be ery use- 
ful as starting solutions in carrying out nu nerical 
anaIyses at arbitrary reaction rate values. 

The object of this paper is to expioit these 
advantages so as to obtain further insight to the 
behavior of nonequilibrium-dissociated, multi- 
component boundary layers in both recom- 
bination-controlled and dissociation-controlled 
flow situations. Specific applications of the 
theory will be made to highly cooled stagnation 
point flows and hypersonic flows over sharp 

flat plates and slender cones. The accuracy of 
the binary mixture approximation for non- 
equilibrium-dissociated air 1141, and the sensi- 
tivity of nonequiIibrium boundary-layer solu- 
tions to both chemical kinetic data and transport 
properties are discussed in detail for these 
applications. In addition, the accuracy of 
the local similarity approximation and the use of 
nonequilibrium boundary-layer scaling laws will 
be examined for the plate and cone flows. 

II. FORMULATION OF THE PROBLEM 

A. Assumptions 
Consider laminar boundary-layer flow of a 

reacting gas mixture around a two-dimensional 
or axially symmetric body. The body surface 
is regarded as impermeabIe and non-abIating. 
To simplify analysis of the nonequilibrium 
behavior, the following assumptions are made: 
(1) The gas is a four component mixture con- 
sisting of two molecular species with equal 
molecular weights and specific heats and two 
atomic species whose binary diffusion coefficients 
are equal and the same with respect to either of 
the molecular species. (2) Prandtl number Pr, 
Schmidt number SC, and the density-viscosity 
product pp are each constant across the boun- 
dary layer. (3) The average specific heat cf; of 
the mixture is constant across the boundary 
layer (i.e. the energy in molecular rotation and 
vibration is assumed negligible in comparison 
with the energy in translation and dissociation). 
(4) Thermal diffusion effects are negligible. 
(5) The velocity distribution across the boundary 
layer is locally self-similar and inde~ndent of 
the solutions to the energy and diffusion equa- 
tions. (6) Pressure gradient effects on the energy 
equation can be neglected. (7) Low Reynolds 
number effects, such as vorticity interaction, 
induced pressure fields, curvature effects and 
slip phenomena at the surface, are neglected, 
(8) Any nonequiIibrium reaction that may 
simultaneously occur in the inviscid flow at the 
edge of the boundary layer will have a negligible 
influence on the nonequilibrium effects within 
the boundary layer. 

Assumption one obviously includes as an 
exact special case a dissociating diatomic gas. 
It also provides a realistic model of high tem- 
perature, nonequilibrium dissociated air in the 
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absence of ablation products or any thermally 
significant ionization as long as the influence 
of nitric oxide formation is small. To be sure, 
the formation of nitric oxide must be taken into 
account in calculating electron density profiles 
across nonequilibrium-dissociated air boundary 
layers on both sharp- or blunt-nosed hyper- 
velocity aerodynamic bodies [5, 27, 301. How- 
ever, for the purpose of studying the thermally 
significant properties of highly cooled, re- 
combination-dominated boundary layers, a four 
component mixture consisting of 02, Ns, 0, and 
N is sufficient because the energy of any NO 
present is usually negligible [27]. The effect of 
nitric oxide formation may not be as small in 
highly dissipative, dissociation rate-dominated 
boundary layers if there occur pronounced NO 
concentration overshoots analogous to those 
observed behind shock waves [31]. Assumption 
two tends to break down for highly dissociated 
gases because pp and SC are affected strongly 
by dissociation through the compressibility 
term in the thermal equation of state [32]. 
Nevertheless, assumptions one through four 
generally are acceptable engineering approxima- 
tions in analyzing non-ablating, highly cooled 
dissociated air boundary layers on blunt 
bodies unless the finer details of the temperature 
and composition profiles are of interest [23, 26, 
33-371. However, as will be shown below, a 
more detailed consideration of the multi- 
component mixture transport properties appears 
to be necessary for highly dissipative non- 
equilibrium boundary-layer flows around sharp- 
nosed slender bodies. With pp = constant, 
assumptions five and six are exact for supersonic 
flows over a wedge or cone; whereas for in- 
compressible flow over wedges, assumption 
five is also exact, while six still remains a good 
good approximation because of the low velocities 
involved. Furthermore, with the exception of 
flows in adverse pressure gradients, these 
assumptions have been shown to be satisfactory 
approximations in solving the boundary layer 
energy and diffusion equations for the flow 
around sharp-nosed slender bodies and highly 
cooled blunt bodies in hypersonic flow [l, 26, 
33-35, 38401. According to a theoretical study 
by Chung [41], the low Reynolds number 
phenomena neglected under assumption seven 

appear to be important only flow regimes where 
the boundary layer has already become com- 
pletely frozen, at least for stagnation flows in 
atmospheric flight. However, this conclusion 
should be viewed with caution in the case of 
sharp-nosed, slender bodies, where the self- 
induced pressure field and fully viscous shock 
layer effects may have an important effect on the 
nonequilibrium relaxation behavior [20]. Finally, 
the neglect of nonequilibrium reaction effects 
in the inviscid flow compared to those within 
the boundary layer under assumption eight has 
been shown to be a satisfactory approximation 
except in the case of unsteady boundary layers 
developing in the slow, rapidly dissociating gas 
flow behind a strong shock in a shock tube 
[29, 421. 

In connection with the foregoing assumptions, 
it should be emphasized that it it not intended 
here to consider all those aspects of the problem 
that can be important in a detailed calculation. 
For example, the effect of the multicomponent 
reaction rate terms in the presence of both 
oxygen and nitrogen atoms and molecules in 
nonequilibrium air will be studied in some detail 
even though NO has been neglected and a simple 
model of the multicomponent mixture transport 
properties has been assumed. To be sure, as 
noted above, the results of such a theory un- 
doubtedly give an incomplete account of non- 
equilibrium air boundary layers around sharp- 
nosed slender bodies, and should be supple- 
mented by consideration of the effects of NO- 
formation and a more accurate representation 
of the multicomponent transport properties. 
The aim of the present paper is thus to explore 
only certain parts of the problem which can be 
treated analytically and yet are essential in- 
gredients in any more complete theory. 

B. Boundary-layer equations 
Let ai denote the i-th specie mass fraction, 

where in the case of air, the four species 02, 0, 
Na, and N are denoted by the indices i = 1,2, 3, 
4, respectively. Then by defining a stream func- 
tion I,!@, 7) = .\/(2t)f(?7) such that 

r&e = a.fl% - f’ (711,t 

t According to assumption six, f(7) is regarded as a 
known function (e.g. the Blasius function in the case of 
supersonic wedge or cone flows). 
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employing the well-known similarity co-ordinate 
transformation [33, 341 

E = 0, two-dimensional 

E = 1, axisymmetric (1) 

(where C = pp/pe t.+, is an appropriate constant), 
and introducing the variables q = at/ad,, 
8 = T/Te and K = x d In Eldx, the governing 
diffusion and energy equations for the boundary- 
layer flow of these four reacting species can be 
written under the above assumptions as follows: 

r 

+ 25‘f’ SC ;; (i = 2, 4) 

z4 aa, + z3 as, = constant ” 0.79 

(2) 

(3) 

(4) 
i-2.4 

where Ho, = hy,lCp Te is the specific dissocia- 
tion energy of the i-th atomic specie expressed 
as a fraction of the inviscid flow thermal energy 
(hy‘ being zero for the molecules) and GJ~ is the 
net volumetric rate of i-th specie atom mass 
destruction due to chemical reaction as formu- 
lated below. In deriving equations (2) and (4) 
the streamwise composition derivatives in the 
inviscid flow have been neglected in accordance 
with assumption eight. Equation (3) expresses 
the fact that the total number of nitrogen atoms 
in the mixture, regardless of their chemical 
form, is invariant to chemical reaction, con- 
vection, or diffusion. As a result of this relation 
and the conditions CPG~ = 0 and zag == 1, 

only two species conservation equations for the 
two respective atomic species are needed. 

The boundary conditions to be imposed on 
the solution to equations (2) through (4) are as 

follows. At the edge of the boundary layer 
7 + co, z&, co) = 19(& co) =.f’(co) = 1. At the 
wall 7j = 0, f(0) = f’(0) = 0, 6(0, [) = &Q). 
Furthermore, since the present study is pri- 
marily concerned with the effects of non- 
equilibrium homogeneous reaction, only the 
two extreme cases for the effect of hetero- 
geneous atom recombination on the body 
surface will be considered [43-45], namely either 
a perfectly catalytic wall [z2, 4 (5, 0) = 017 or a 
completely non-catalytic wall [8z2, .&(5,0) = 01. 
Approximate analyses of the simultaneous effects 
of finite gas phase and surface recombination 
rates for highly cooled stagnation point boun- 
dary layers may be found, for example, in 
[7, 21, and 231. Once the atom concentration 
and temperature distributions are known, the 
heat-transfer rate &, to the body can be com- 
puted from 

--Pr kMcP Te) ae 
[(K/2) c-p&L8 (U,/X)]1’2 = Qw = &j (” ‘) 

+ Le c ate HD, it (0, f) (5) 
i=2,4 

where Le = Pr/Sc is the Lewis number. It is 
observed that only heat conduction contributes 
to the heat transfer when the wall is perfectly 
non-catalytic or when the gas is undissociated 
(a2 = a4 = 0). 

C. Reaction rates 
For the high temperature air model assumed, 

the rate chemistry in the boundary layer con- 
sists of the following two independent dis- 
sociation-recombination reactions for oxygen 
and nitrogen, respectively: 

k% 
(6a) 

kD4 
Ns + NZ .z=* 2N4 + NZ 

/CR4 

(6b) 

where Ni denotes the number of moles of the i-th 
species and the third body acting as the catalyst 

_~__ 
t The wall temperature is assumed to be low enough 

(_<2OOO”K) that the equilibrium atom concentrations at 
the gas/solid interface are zero. 
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for recombination (subscript X) may be any one 
of the four species present. Let the equilibrium 
constants and recombination rates be of the 
general form 

and kRi = kit_ (T/TR2f”i, respectively [31, 46- 
481, where Af, sir and wi are constants, PO is 
atmospheric pressure, TRY and TRY are constant 
reference temperatures, N = I;Nf, 

is a characteristic dissociation pressure of the 
molecules, and Tui = 2& m&‘tA is the molecular 
dissociation temperature. Then application of 
the laws of phenomenological rate kinetics 
[49] and the thermal equation of state 
P = (.~~~m~) T(1 i a2 -t u4)p for the present 
problem yields the following net reaction rates: 

@a) 

where the square bracketed quantities on the 
right-hand sides have the important property of 
vanishing identically at equilibrium. Obviously, 
equations (8) also apply in the special case of a 
pure diatomic dissociating gas composed of atoms 
(subscript a) and molecules (subscript n?) by 
setting, for example, aa = ad = 0 and 
a2 = aa = 1 - al = 1 - am. It is noted that the 

net recombination rate coefficient foreitheratomic 
specie is a molar-average of the coefficients 
kk,, pertaining to each possible catalyst specie s. 
This is because the catalytic efficiencies of 0, 
N, 02, and Nz with respect to a given atom are 
generahy not the same [31, 481. To simplify the 
subsequent analysis, appropriate constant values 
will be assumed for these two averaged co- 
efficients, since the effect of their variation 
across the boundary layer would appear to be 
smaI1 compared to the variation of remaining 
composition and temperature-dependent terms 
in equations (8). Moreover, since available 
experiment [47, 481 and theory [50] indicate 
that the recombination rate exponent W( is 
essentially the same for 0, N and most other 
diatomic gases (wi N_ 0 to --1~5)~ it is hence- 
forth assumed that wa = wq == W. 

Introducing the previously defined non- 
dimensional variables into equations (8) and 
using assumption eight by setting “iat, = 0, the 
chemical source terms in equations (2) and (4) 
can be written 

2.3. SC iiJ$ 
-- z r& Gi 

K& pi, 

(i :I: 2, 4) 

where 

(9) 

(lOa) 

0) j. 
1‘ J 
(lob) 

(Ifa) 
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Here, equilibrium boundary layer can be written as 

is a characteristic (llow-time/recombination- 
time) ratio for the boundary layer similar to that 
defined by Fay and Riddell [14]. When r = 0, 
the flow is chemically frozen with the reaction 
terms in equations (2) and (4) neglected (although 

Now the binary mixture model for dissociating 

the Gt are not zero), whereas if f-t co, the 
air consists of approximating the total atom 

flow tends toward an equilibrium state through- 
rate on the right side of (13) by the net re- 

out the boundary layer defined by 
combination-dissociation rate that would exist 
in a pure diatomic gas with a relative atom 

Cc&) = G4(7) = 0. mass fraction 2, as follows: 

Since r is directly proportional to x and also 
depends on the local inviscid flow pressure, 
temperature, and velocity as well as the body 
shape, the degree of departure from chemical 
equilibrium within the boundary layer can 
vary appreciably along the body. Therefore, 
the effects of nonequilibrium reaction in the 
boundary layer are generally non-similar (de- 
pending on I as well as 7). Only in the special 
case of stagnation point flow on a symmetric 
body (u, - x; pe, Te, K = COnStant) iS r indepen- 
dent of x and the nonequilibrium boundary 
layer therefore exactly self-similar [14]. 

D. The binary mixture approximation for mm- 
equilibrium air 

In their analysis of nonequilibrium boundary- 
layer flow of dissociated air at a stagnation 
point, Fay and Riddell [14] employed a simpli- 
fied representation of the net dissociation- 
recombination reaction rate terms for the 
mixture wherein air was treated as an effective 
diatomic gas composed of “air molecules” and 
“air atoms”. Since one of the objectives of this 
paper is to evaluate the importance of the multi- 
component gas reaction rate terms in analyses of 
nonequilibrium air boundary layers, a descrip- 
tion of this binary approximation is appropriate 
at this point. 

that is, the sum of the products of the individual 
atom reaction rates and dissociation energies is 
approximated by the product of an averaged 
dissociation energy @rt and the net atom 
reaction rate based on the binary gas model. 
Correspondingly, the diffusion heat flux con- 
tribution to the surface heat transfer can be 
written 

Consider the present four-component gas 
mixture from the standpoint of determining the 
distribution of the total atom mass fraction 
a LL= a2 + a4 = a2,22 + aa, ~4. Introducing the 
variable 2 = a/se and using equations (2), the 
equation governing the change in a across a non- 

Approximations (14)(16) do not follow from a 
development of the exact expressions but are 
based on intuitive physical reasoning following 
the idea of an equivalent binary mixture. 
Obviously, a very convenient formulation of the 
problem is thereby obtained, since the non- 
equilibrium effects on the composition fieid 

Consistent with this approximation, one may 
also employ a corresponding approximation for 
the reaction rate-dissociation energy product 
summation on the right side of the energy 
equation (4). Thus, following [14], this sum- 
mation is represented by the following equivalent 
binary form : 
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throughout the boundary layer are expressed 
solely in terms of the total atom mass fraction 
The error incurred by using these approximations 
will be examined below. 

III. SOLUTION FOR NEARLY FROZEN 
NONEQUILIBRIUM FLOWS 

A. Perturbation method 
The mathematical difficulties connected with 

the highly nonlinear reaction terms in equations 
(2) and (4) naturally invite a more restricted 
approach wherein attention is confined to small 
departures from a completely frozen flow 
(Z’(t) < 1). One thereby trades the ability of 
treating the complete range of nonequilibrium 
reaction effects for the advantages of dealing 
with linear differential equations. Accordingly, 
we expand each of the dependent variables about 
its local frozen value as follows : 

+ r” (6) ZIIj (71) + . . . (i = 224) 

e (5,q> = OF (6, VI> + r (0 @I(771 I 
(17) 

+ r’ (5) &I (71 + * . . 

where subscript F denotes the frozen flow solu- 
tion, subscript Z denotes the first-order perturba- 
tions due to nonequilibrium reaction, etc. On 
substituting these series into equations (2), (4) 
and (9), equating to zero the net coefficient of 
each power of r, and confining attention to 
first-order effects,7 one obtains the following 
two sets of equations governing the zeroth-order 
(frozen) flow and first-order nonequilibrium 
perturbations, respectively: 

Scfzk., + z;, == 0 (i = 2, 4) (18) 

and 

SC fZ>< + z;; 5 dr 
- 2 pJg Scf “If 

t 1 
= hi GF~ (7) (i = 2, 4) (20) 

t A detailed treatment of second order effects (-P), 
which entails a far more complicated and laborious 
analysis, may be found in [35]. 

6 dr prfO;+ti;'-2 7~ Prf'h c 1 
= -- Le c ai, ffo, hi GF~ (7) (21) 

iz'L.4 

The corresponding boundary conditions for 
i = 2, 4 are ZFi(a) = &7([, 03) = 1, Z&(03) = 

b(a) = 0, e&f, 0) = 0&f), 81(o) = 0 and 
either z&O) = zrl(0) = 0 for a catalytic wall or 
z;,(O) = z;,(O) = 0 for a non-catalytic wall. The 
first-order nonequilibrium heat-transfer rate 
QW becomes 

Qw = Qw, + rQw, 1 

+ r [e’,(o) -t Lf? z at, ffDi Z;,(o)] 
i=2,J J 

B. Frozen solution 
The diffusion equations (18) for the two 

atomic species are ordinary differential equa- 
tions because ai, and the wall boundary con- 
ditions are assumed independent of x. Their 
solution [43] in terms of the known stream 
function f (7) is 

1 exp (--SC %f dq) dv 

zFi(v) = z&V) = 2 

------- i ! exp (--SC yf dddrl 
0 0 

_ 4% SC) 

i 

(23) 

-qco, SC)’ 
catalytic wall 

(i = 2, 4) 

= 1, non-catalytic wall J 

In the important special case of a negligible 
pressure gradient, where f is the Blasius function 
f&7) satisfyingfs f i + f ;(' = 0, one has Z(q, SC) 

= [f L(O)]-SC 7 [f ;;(y)]"c dv with f i(O) = 0.47 

and Z( 00, SC) CX’ (0.47 S~i’a)-~. 
The energy equation (19) is a partial dif- 

ferential equation because OF will not be self- 
similar in the general case where either T,, Te, or 
ue vary arbitrarily along the body. Various 
exact and approximate solutions for such 
cases are available in the literature and need not 
be discussed in detail here. It is noted, however, 
that in the special case of uniform surface 
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temperature and negligible pressure gradient, 
the following self-similar solution to (19) 
is obtained : 

~-.- ep (co, Pr) - & (q, Pv) 
Z(Q Pr) 1 (24) 

The last term in equation (24) represents the 
effect of viscous dissipation heating (negligible 
for incompressible flows). The functions 1(y) 
and ep(T) based on the Blasius function are well 
tabulated in the literature on boundary-layer 
theory. 

Substituting (23) through (25) into (22), the 
frozen boundary-layer heat transfer can be 
written 

eul, = Mot, Pr)l-1 1 

+ J Le -------.--- (az, Ho2 + ~4, HD~,,) 
I(cQ SC) 

r O-47 ~~113 

(26) 

+ JLe213 (a2 e Ho, + a4 e Ho*) I J 
where J = 1 for a catalytic wall and J = 0 for a 
perfectly non-catalytic wall. This reIation cfearly 
shows the well-known result that a substantial 
reduction of heat transfer from a frozen, dis- 
sociated boundary layer can be obtained by 
maintaining a very low surface catalycity and 
thus preventing release of the heat of recom- 
bination to the body. This is true regardless of 
the Lewis number. 

Based on solutions (23) and (24), some 

typical distributions of the frozen reaction 
rate function GF&) [which is representative of 
both the non-homogeneous “forcing functions” 
G&) appearing in the first-order ~rturbation 
equations] are plotted in Figs. I(a)-X(c) for 
either a catalytic or non-catalytic wall. Consider 
the case of highly cooled, low velocity flows 
involving small or negligible viscous dissipation 
[Fig. I(a)], such as in the stagnation region of a 
blunt body in hypersonic flow. Here, gas phase 
recombination (-Zg) near the wall is the con- 
trolling reaction rate within the boundary 
layer so that the GF$(~) are predominantly 
positive. As a result, the magnitude and distri- 
bution of the GF<(T) near the wall are significantly 
affected by the surface catalycity due to the 
inffuence of the species boundary conditions 
on the recombination term. However, these 
functions are seen to be relatively insensitive to 
the exponential dissociation rate term (eD,) 
except in the outer portion of the boundary 
layer. Consequently, the approximation 
GF~ = GF* holds very we11 throughout the 
inner portion of the boundary layer. Consider 
now the case of locally high speed flows where 
viscous dissipation heating is large [Fig. l(c)], 
such as those around a slender wedge or cone in 
a cold, hypervelocity gas stream. Here, the 
functions GF&TJ) are dominated by the ex- 
ponential dissociation rate term and hence 
predominantly negative. The dissociation rate 
has a pronounced maximum at a location 
q = q* corresponding to the maximum frozen 
flow temperature. In contrast to the afore- 
mentioned low speed, recombination-controlled 
flows, the functions GF&,T) are relatively un- 
affected by the surface catalycity when Tw is 
well below the recovery temperature. Further- 
more, the GF&T) are now very sensitive to 
the parameter 6~ so that GQ and GF* can 
differ considerably from each other in the 
vicinity of the maximum reaction rate. 

C. First-order solution 
The linear, non-homogeneous equations (20) 

and (21) are readily solved by standard mathe- 
matical methods and involve quadratures of the 
frozen reaction rate distribution functions. 
These are ordinary differential equations because 
the perturbation distribution functions ZQ(~) 
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(c) HIGHLY DISSIPATIVE OISSOCIATION 
RAiE CONTROLLED FLOWS 

it-1 HiGHLY COOLED DlSSlPATlVE FLOWS 

FIG. 1. Reaction rate distributions. 

and @z(q) were taken to be self-similar in writing 
the series solutions (17). The non-simiiar effect of 
chemical reaction therefore resides entirely in 
the variation of r(6) along the body. To be 
consistent with this assumption, both 6DI and 
the parameter Q = 5[(dr/d#r] must be con- 
stant, so that 7k = constant and f - [‘J where 
Q is an arbitrary constant. These conditions 
are realized, for example, in supersonic flows 
over wedges or cones [[ N Se+1 (26 + 1)-t 
sinsc 6, r N x, Q = ~-1 = (26: + 1)-l; 6 = 
wedge or cone semi-angle], stagnation point 
flow on a blunt body in supersonic flow 
[t - ~s(li-~)/Z(l + E), Q = 0, K = 2(1 3_ c)] 
and for incompressible flow over wedges 
[u, N .G, 6 == M7r/(l + M), s: ‘W XM’l/(M + 1). 

0 I 1 I M, Q = (1 - M)/l + M), K = 1 + 

WI. 
Equation (20) is solved in terms of the solu- 

tion ~(7, Q, SC) to the associated homogeneous 
equation 

Scfe’ + 8” - 2Q Scf’ s = 0 (271 

with s(0) = 1, L(O) = 0. This solution is unique 
for Q > --l/2 and is readily obtained by a 
straightforward numerical integration of equa- 
tion (27) using Milne’s method; typical results 
based on the Blasius function are plotted as a 
function of SC and Q in Fig. 2. The full solutions 

~- 
t Here, since pe and T, can be assumed constant, the 

thermal equation of state and equation (12) yield 
r - X/U?. 
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FIG. 2. The function s(y). 

to (20) for either a catalytic or non-catalytic 
surface can then be written [51] 

BOUNDARY-LAYER FLOWS 

;!exp (--SC ]fdd 

9th SC) = - J *‘(? g, .-- 

9 

0 

= I&, SC) 7 ~(7, SC) exp (SC IJdn) G&) drl 
0 0 

- i WI, SC) 4~ W exp (SC [fdd G&d dv 

W’b) 

The function Z#(?, SC) based on,fb(T) is plotted 
in Fig. 3 for various values of Q. It should be 
emphasized that the reaction rate integrals 
(30b) for a catalytic or non-catalytic wall, 
respectively, will differ considerably in the 
case of recombination rate-controlled flows as is 
evident from Fig. l(a). A comprehensive para- 
metric study of this integral has been made over a 
wide range of the parameters Q, a.(,, SC, BLIP, w 
and U for both catalytic and non-catalytic 
walls. A detailed description of these results is 

2.0 I I I 
I-_ (().47) -- 

I.8 

I.6 

4;( %. Sc) -Yi(7, SC)‘> * S(7, SC) I I’: 

Z;;(o) = -- JhlSi(W,‘SC),[l -- i 
(i = 2,4) (28) z 

L 

J t J. I*(co)l 
z[i(o) = - (1 --. 

J) hiXi( co, SC) i 
where 

q exp (--SC !.fdd 
Za(7, SC) = J -~~ ----- 

~“(7, Sc,‘Q) drl (29) 

0 FIG. 3. The function I.(v). 
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given in reference 52 but is not presented here 
due to space limitations. 

In connection with the foregoing solution, it is 
of interest to note a closed-form approximation 
for ftd(o3) suggested by Rae [19] for highly 
dissipative flows where the exponential dis- 
sociation term in GF~(~) is the dominant con- 
tribution and very large. Here, if 0~~ 9 1, 
f”(q*) > 0 and the recombination rate is neg- 
lected, the method of steepest descent [53] can 
be used to evaluate the integral 4i(co) from 
(30b) with the following result: 

.Yt( 0~) N .+*I exp (Sc T_f’dv) [A( co> 

where /?a = [(0n,j2) (l/ti~)~*]i’~ and T* here 
refers to the position of the frozen flow tem- 
perature maximum [O&T*) = 01. For constant 
wall temperature and negligible pressure 
gradient, equation (24) yields the foliowing 
relation to determine y* when the Prandtl 
number is near unity: 

f&*) 21; [ 1 + (k$) ~2~~~ 

which in turn gives 

(32) 

(33) 

Approximation (31) may be thought of as the 
product of the maximum reaction rate GF~(~*) 
and a form factor that accounts for the inte- 
grated effect of reaction across the entire 
boundary layer as modified by the influence of 
convection and diffusion. Correspondingly, the 
steepest descent method also gives X6(77*) 2: 0, 
which yields from equation (28) : 

I- 9da)l (34) 

Now, as shown in reference 52, the exact values 
of ,ldr(q*) for wall temperatures well below 
recovery temperature are equal to O-2 4i(oz j 
O-3 Si(co), so that -Ibr(q*) 21 0 in itself is a poor 
approximation. However, since it is also found 

that the corresponding approximation (31) 
underestimates Y1;(co) by about thirty per cent, 
equation (34) shows that the two errors nearly 
cancel each other in determining the z&*), 

Turning to the first-order energy equation 
(al), it can be seen that the solution for 6$(v) is 
of the same form as the atom concentration 
perturbation for a catalytic wall when SC is 
replaced by Pr in the functions ~(17, SC, Q) and 

exp (&SC “ff dq). Thus, one readily finds 
0 

X<( co, Pr) -- .&(q, Pr) 
1 

~(7, Pr, Q} (3W 

e;(o) = Le C ai, hi Hu,&(aci, Pr) 
i 

i-2, J 

/ 

where 

7 exp (-Pr lfdq) 
Jt(v, Pr) = s 0 ---- ------ ~~--- 

~9 (7, Pr> 
0 

[ i 4~ Pr> exp (Pr [f&l G&d &I drl Wb) 

Then, subslitutillg solutions (28) and (35) into 
equation (22), the first-order heat-transfer 
perturbation due to nonequilibrium reaction 
becomes 

For a non-catalytic wall (J = 0), this heat- 
transfer perturbation is due entirely to the 
effect of gas phase reaction on the surface 
temperature gradient at the wall. From Fig. 1 
and equation (30a) it is seen to be positive for 
recombination-controlled reaction in the boun. 
dary layer and negative for dissocation-con- 
trolled flows. These conclusions are essentially 
independent of the Lewis number. For a com- 
pletely catalytic wall (J = l), QWI is much 
smaller since the effect of chemical reaction on 
the temperature gradient and diffusion heat 
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flwc, respectively, is nearly the same but opposite 
in sign. Moreover, in this case, the sign of 
Qwr depends strongly on whether the Lewis 
number is greater or less than unity, since it is 
seen that (Qwr)~=l = 0 for Le = l(9a =A) 
The vanishing effect of gas phase reaction on 
heat transfer to a completely catalytic wall for 
Le = 1 is a well-known result [14, 33, 341, and 
follows from the fact that the total enthalpy 
distribution throughout the boundary layer for 
Le = 1 is unaffected by reaction. This can be 
inferred directly from equations (28) and (35) by 
observing that the total enthalpy perturbation 
&(q) + &zie Ho, zzs is zero when Le = 1 and 
ZI{(O) = 0. 

IV. APPLICATIONS OF THE THEORY 

From the present theory, the first-order 
effects of nonequilibrium dissociation-recom- 
bination reaction can be readily calculated for a 
variety of flow conditions and body shapes. 
Among the possible applications, those in- 
volving stagnation point flow on a blunt body 
and hypersonic flow around either a flat plate or 
cone are of particular interest and will be con- 
sidered in the remainder of this paper. 

A. Highly cooled stagnation point flow 
Aside from its obvious practical importance in 

H.M.-4A 
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missile technology, this case is also of interest 
here because comparison can be made with Fay 
and Riddell’s numerical results for the complete 
nonequilibrium flow regime based on the binary 
mixture model for air [14]. Here, the controlling 
nonequilibrium reaction is the atom recombina- 
tion rate in the gas near the cold wall. Typical 
total atom concentration and temperature 
profiles across the stagnation point boundary 
layer in air on an axisymmetric body (Q = 0, 
K = 4) according to the present theory are 
plotted as a function of r in Figs. 4(a) and 4(b). 
These curves illustrate how a departure from 
completely frozen flow toward equilibrium 
reduces the atom concentration near the wall 
(and raises the temperature) due to the growing 
recombination rate near the wall. The cor- 
responding behavior of the total atom 
concentration (or concentration gradient), tem- 
perature gradient and heat transfer at both a 
non-catalytic and a catalytic wall is shown in 
Figs. 5(a) and 5(b), respectively. In these 
figures, the results of the present theory for 
both the four-component mixture and the binary 
gas model are shown together with the corres- 
ponding numerical results of [14] for the 
latter model. The present theory for the binary 
model is seen to agree reasonably well with the 
nearly frozen results of [14] in the non-catalytic 

THESE CURVES ALSO &,PPLY 
TO ia NON-CPTALYTIC WALL &IT’ 
I-: 2.64 Y to-’ TIMES THE 

“ILUES SHOWN 
_ 

FIG. 4. State profiles across a highly cooled, nonequilibrium stagnation point boundary layer. 
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NUMERICAL RESULTS-- 
OF REFERENCE 14 

FOUR-COMPONENT MODEL 

G 0.2 

-3 
PRESENT THEORY; 

- BINARY MODEL 

-a 

BINARY MODEL 

lb1 CATALYTIC WALL 

FIG. 5. Properties at the gas-surface interface for the stagnation point. 

wall case, the agreement being best for the heat 
transfer. The corresponding agreement for the 
catalytic wall case is only fair.7 The discrepancy 
between the present solution and that of Fay 
and Riddell for very small r is due to the sim- 
plifying assumptions f N f~(y), pti = constant 

and c& = constant employed here which were 
not used in [14]. Clearly, the error in these 
assumptions is negligible for the purpose of 
calculating nonequilibrium heat transfer. It is 
of interest to note from Fig. 5 that the first- 
order theory is restricted in application to 
deviations from frozen flow on the order of 
10 per cent or less; for I’ 2 5 x 10-5, the second 
(-I’s) and higher order effects which constitute 
a subtractive correction to the first-order theory 
become increasingly important. 

Comparison of the results for the four- 
component mixture and the binary gas approxi- 

-_______--_ 
t Comparison of the catalytic wall heat-transfer 

perturbations, which are extremely small, has been 
omitted in Fig. 5(b), because of the difficulty in accurately 
determining QwlQrup at very small r from the results given 
in [14]. 

mation for air indicates that the first-order 
nonequilibrium perturbations predicted by the 
latter model are roughly twice the four-com- 
ponent mixture values in the present example. 
This is because the binary model for air over- 
estimates the total atom recombination rate near 
the highly cooled wall by approximately the 
factor (a~, + ~&~/(a;, + a:$ (=I*91 in the 
present example).:: Correspondingly, the tem- 
perature gradient and heat-transfer perturba- 
tions are also overestimated with the binary 
model by approximately the factor (a~, HD2 + 

a4, HD4) (W, + a4,>/(a;c HD, + ‘$ MD,) = 1.79. 
Thus it is clear that the binary gas model of 
dissociated air, although undoubtedly a useful 
tool for rough engineering solutions, can over- 
estimate the gas phase recombination effects 
near the wall by a factor of two for highly 
nonequilibrium stagnation point boundary layers 
when a significant concentration of the nitrogen 
as well as oxygen atoms exists at the edge of the 

. 1 This can readily be seen by comparing 4, +x 
wzfrom (14), using (9), (IO) and neglecting the exponential 
dissociation rate terms near the wall. 
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boundary layer.7 In this connection, the present nonequilibrium boundary-layer properties to 
analysis suggests that the binary-model solu- the assumed value of W. Now, this can be 
tions can be easily corrected to account for the appraised (at least for small P) from the present 
multicomponent effects in air (at least for nearly theory using the following relation [see equations 
frozen flows) by using the following effective (12) and (17)]: 
recombination rate parameters FG and F0 in 
correlating the nonequilibrium effects on the 

W-2 

specie and energy variables, respectively: 
up = p _ pF _ xf(co) _ 

which include ~approximateIy) the effect of 
different species catalytic efficiencies for gas 
phase recombination with respect to either type 
of atom present. These parameters might have 
been deduced intuitively from an inspection of 
the original reaction rate terms, and also might 
be expected to hold as an approximation over a 
rather wide range of I’ values. Indeed, correla- 
tion rules of this type deduced empirically have 
been found to accurately describe stagnation 
point heat transfer to a perfectly non-catalytic 
wall over a large part of the entire nonequili- 
brium flow regime for a wide range of free 
flight conditions [I]. 

To conclude this discussion of stagnation 
flow, it is of interest to examine the sensitivity 
of the nonequilibrium heat transfer to the 
recombination rate exponent w. Ahhough 
earlier experimental investigations suggested 
the value w = -- 1.5 for air and most diatomic 
gases (which value has been widely used in 
analyzing viscous and inviscid nonequilibrium 
flow problems), some recent studies [8, 541 
indicate that w might be more nearly between 
--I*0 and -050. Since the value of this para- 
meter over the wide temperature range en- 
countered across highly cooled stagnation boun- 
dary layers is therefore still uncertain, there 
arises the question as to the sensitivity of the 

t Note from Fig. 5 that the errors introduced by 
neglecting the multicomponent effects on the reaction 
rate terms can be comparable to the combined error due 
to neglecting the details of the specific heat variations 
and transport properties, especially in the catalytic wall 
case. 

where P is any surface property (atom concen- 
tration, heat transfer, etc.). For TR, = 4500°K 
[31] using the computed values of X(co, W, &J 
[52], the ratio AP(w)/AP(w = -1.5) for non- 
catalytic wall heat transfer is plotted as a 
function of w in Fig. 6 for several different wall 

6 
I I I 1 

I \ 1 
9, = 0.50 

~:: 

8, = 0.20 

8, = 0.04 

-3 -2 -I 0 
w 

FIG. 6. Effect of recombination rate exponent on non- 
equilibrium stagnation point heat transfer. 

temperature ratios and a typical stagnation 
temperature Te = 7500°K. The heat-transfer 
perturbation due to nonequilibrium reaction is 
clearly very sensitive to the assumed value of U. 
for very highly cooled walls (8, < 0.10);. 
changing w from -15 to - 1.0, for example,. 
can reduce this pe~urbation by a factor of 3. 
However, with increasing wall temperature, the 
sensitivity to w diminishes rapidly and is. 
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,negligible at 0, = 0.50 in the present examp1e.f 
This sensitivity to w in the highly cooled wall 
case can perhaps serve as a means of measuring 
w itself through direct catalytic-non-catalytic 
differential heat-transfer probe measurements 
and use of an accurate nonequilibrium boundary- 
layer theory, provided that the energy in dis- 
sociation is large enough and that equilibrium 
at the edge of the boundary layer can be at 
least approximately maintained [S]. 

3. Hypersonic flow over a plate 
Hypersonic flow over a sharp, flat plate 

aligned with the incident stream (Q = K = 1) 
provides a convenient physical model to 
illustrate the effects of nonequilibrium reaction 
on boundary layer flows around slender aero- 
dynamic bodies. Here, viscous dissipation 
heating within the boundary layer initiates a 
dissociative reaction due to the large frozen 
flow temperature peak at the leading edge, and 
a dissociation-controlled relaxation toward equi- 

t Although the effect of w shown here is strictly appli- 
cable only to slightly unfrozen nonequilibrium flow, it 
has been shown to hold with good approximation through- 
out most of the nonequilibrium flow regime as well [55]. 

librium takes place with increasing distance 
along the plate. 

Typical distributions of total atom concen- 
tration and temperature across the boundary 
layer near the leading edge of a highly cooled 
plate immersed in a low-temperature, equi- 
librium, hypervelocity stream of air are pre- 
sented in Fig. 7 as a function of the local 
reaction parameter 

(The reason for choosing this parameter is 
explained below.) These curves illustrate how 
the degree of dissociation and temperature 
increase and decrease, respectively, with dis- 
tance along the plate due to the dissociation 
rate-controlled nonequilibrium relaxation pro- 
cess. Although the surface catalyticity has a 
pronounced effect on the atom concentration 
profile near the wall through the specie equation 
boundary conditions, it does not sensibly 

24 i 

0 I 2 3 4 5 0 I 2 3 4 5 

9 T) 

(0) TOTAL ATOM CONCENTRATION (b) TEMPERATURE 

FIG. 7. State profiles across a hypersonic nonequilibrium boundary layer along a sharp flat plate. 
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affect the influence of the gas phase reaction on 
a($ in the region 0 I q < q* because the 
solution is still completely dissociation rate- 
controlled for either a catalytic or non-catalytic 
wall. Indeed, this situation holds true throughout 
most of the relaxation region along the plate, 
until the boundary layer approaches close 
enough to equilibrium that the recombination 
rate in the gas near the surface becomes com- 
parable to the local maximum dissociation 
rate [19, 201. 

Some important aspects of the nonequilibrium 
boundary-layer behavior in highly dissipative 
flows are conveniently brought out by exa- 
mining the first-order maximum total atom 
concentration solution a(q*) in more detail. 
Employing the relationships & = 0 from equa- 
tions (8) in (17) and (28) so as to eliminate 
as, and a4, in favor of pe, Te and the molecule 
concentrations al, and as,, this solution can be 
written 
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in (40) may be neglected unless O&T*) is ex- 
tremely large; this corresponds to the well- 
known physical fact that the nitrogen in air 
undergoes thermal dissociation only after the 
oxygen has first almost completely dissociated. 

It is clear that SD, instead of r, is the most 
appropriate (flow length/reaction length) para- 
meter for dissociation rate controlled, nearly 
frozen nonequilibrium boundary-layer flows of 
either a pure diatomic gas or an air mixture with 
negligible nitrogen dissociation. Indeed, exa- 
mination of the general nonlinear equations 
(2) (4) and (8) with the gas phase recombination 
terms (+) neglected shows this to be the case 
regardless of the magnitude of the local dis- 
sociation rate. Consequently, equations (3 I), 
(39) and (40) together with the frozen Aow 
solutions (23) and (24) show that the nearly 
frozen maximum atom concentration for a given 
gas and body shape depends only on the product 
peX when ue, at,, re and the wall conditions are 

a(?‘)-aF(v*)=rD[-- ($-*($)@-’ exp (- 00,) 92(m, a2, = 0) 1 [l - a&*>] s(y*) 

(40) 

Here, it has been assumed that$a(T*)/Xa(co) = 
2&q*)/J&m) =.F4(q*)/94(00) and the ratio 
~4~~)/~2( m) evaluated from equation (3 l), 
which are very good approximations for dis- 
sociation rate controlled flows. This solution 
as it stands is generally applicable to either 
plate, wedge, or cone flows; the specialization 
to a particular case is made by selecting the 
appropriate values of K and Q (e.g. K = Q = 1 
for the plate). The terms preceding the last 
braced expression in equation (40) pertain to 
the solution for the binary gas model based on 
pure oxygen properties, while the two terms 
inside the last braces represent the multi- 
component species effects which are present in 
the case of a dissociating air mixture. Clearly, 
when 60, b 2@D2 >> 1 and pD4 21 O(~D,), 
s4 - O(s2) (as is the case for air), the last term 

each fixed. [Again, it can be seen from the 
original governing equations of the problem 
with gas phase recombination neglected that this 
conclusion is not restricted to nearly frozen 
flow and, moreover, applies to 7’(~) and each of 
the ar(v) for all 7 across the boundary layer.] 
This important similitude result is the expected 
consequence of the binary scaling principle 
due to Gibson [46, 561 as applied to hypersonic, 
dissociation rate controlled, nonequilibrium 
boundary-layer flows. A further simplification 
of the scaling rule obtains for sharp-nosed 
slender bodies with a small disturbance, hyper- 
sonic local inviscid Aow (u, cs urn, Tt: < ~$25 
when the temperature Te has a comparatively 
small effect and can be dropped out of the 
similitude considerations. In this case, the 
effect of altitude at a tied velocity and body 
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surface conditions in an undissociated free 
stream of given gas is completely scaled by a 
simple change in distance x according to 
x N lIpa (with pe = pm for the flat plate case). 
That is, the same values of T(T) and ai occur 
at larger x with increasing altitude because of 
the reduction in the dissociation rate with 
dropping pressure. 

In Fig. 8, some typical first-order variations 
of u(~*)~~l~ along a non-catalytic plate are 

0.8, !-’ 

0.6 

0.4 

0.2 

0 -____! 

FIG. 8. Maximum atom con~~ntratioil distribution atong 
a non-catalytic plate for M, = 25 at 2oOooO ft altitude. 

plotted versus r~ for SC = Pr = 1 and 
SC = O-50, Pr = 0.70, along with the result 
based on the steepest descent approximation 
for the SC = Pr = 1 case. To indicate the 
limitations of the nearly frozen theory, there are 
also shown the corresponding nonlinear relaxa- 
tion effects as obtained by a local nonlinear 
extrapolation of the first-order results according 
to the approximate theory of Rae [19]. It is 
seen that the steepest descent approximation 
yields a very accurate solution, only slightly 
underestimating the initial growth in the maxi- 
mum atom concentration along the plate. It is 
also seen that the nonlinear relaxation effects 
become appreciable when a(T*)/al, z 0.10, 
which is to be expected since the first-order 
theory applies only at very small ro_ However, 
the extreme sensitivity to the transport property 
parameters observed in Fig. 8 is somewhat 

surprising at first; the initial gradient in a(~*) 
along the plate for SC = Pr = 1 is an order of 
magnitude larger than that predicted assuming 
SC = O-50, Pr = O-70. A careful study of 
equations (24) and (40) shows that this is 
mainly due to the effect of the Prandtl number 
on the maximum frozen temperature as mag- 
nified by the exponential temperature function 
in the dissociation rate. Clearly, solutions based 
on the classical simp~fying assumption Pr = 1 
of boundary-layer theory will significantly over- 
estimate the degree of dissociation in highly 
nonequilibrium air plate boundary layers 
(Pr m 0.70). More generally, it can be inferred 
that a fairly detailed consideration of the effect 
of the transport properties across the boundary 
layer in dissociation-controlled flows (e.g. plates 
or slender cones) must be made to obtain non- 
equilibrium solutions of acceptable engineering 
accuracy. 

In Fig, 8, there are also presented solutions 
based on the value Q = 0 instead of unity for 
the plate. Since Q = (~/~) (dr/d[), these solu- 
tions therefore correspond to the assumption of 
local similarity whereby the non-similar effect 
of reaction is neglected a priori. It is seen that the 
local similarity approximation overestimates 
the initial atom concentration gradient along 
the plate by a factor of 2 in these examples. 
This approximation is clearly a poor one under 
very low ambient density conditions where the 
boundary layer remains nearly frozen (or 
almost so) over an appreciable extent of the 
plate. On the other hand, when the nearly 
frozen flow regime is confined to a small region 
near the leading edge, as is more often the case 
in practical problems, local similarity would 
appear to be a useful engineering approximation 
over most of the plate where nonlinear reaction 
effects predominate [28, 291. It is noted from 
Fig. 8 that the accuracy of the local similarity 
solution is noticeably better for Pr = Se == I 
than in the case where SC -= O-50, Pr = 0.70 
and hence depends to some extent on the 
transport properties. 

The nonequilibrium heat-transfer distribu- 
tions along the plate corresponding to the con- 
ditions in Fig. 8 are plotted in Fig. 9 for both 
non-catalytic and catalytic surfaces. The exact 
solutions with Q = 1 show the usual large 
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FIG. 9. First-order nonequilibrium heat-transfer dis- 
tributions along the plate. 

difference between non-catalytic and catalytic 
heat transfer for nonequilibrium flow. The 
nearly frozen non-catalytic heat transfer drops 
significantly with increasing distance along the 
plate because the growing atom concentration 
at the wall increasingly reduces the local overall 
driving enthalpy difference for heat transfer 
across the boundary layer. In contrast, for 
Le > 1, the heat transfer to a completely catalytic 
wall increases very gradually along the plate in 
the nearly frozen regime, since the growing 
local heat release to the wall due to hetero- 
geneous atom recombination slightly exceeds 
the corresponding reduction in local heat 
conduction from the gas to the wall. As ex- 
pected from the results of Fig. 8, the non- 
catalytic heat transfer is quite sensitive to the 
transport property parameters, the initial rate of 
decrease in heat transfer along the plate for 
SC = Pr = 1 being five times greater than that 
for the case SC = 0.50, Pr = 0.70. Thus, a 
detailed consideration of transport properties 
in the nonequilibrium boundary layer appears 
necessary for accurate engineering calculations 
of heat transfer as well as state profiles along 
the plate. This is in marked contrast to the 
stagnation point, where the nonequilibrium 
heat-transfer calculation is comparatively in- 
sensitive to the detailed transport property 

values. Clearly, experimental studies involving 
either absolute non-catalytic or differential 
non-catalytic-catalytic heat-transfer measure- 
ments on plates or slender cones with dissocia- 
tion rate-controlled nonequilibrium boundary- 
layer flows should use theoretical solutions 
based on a careful consideration of the transport 
property variations for these particular geo- 
metries.t 

A comparison of the exact (Q = 1) and 
locally similar (Q = 0) solutions in Fig. 9 
indicates that the latter overestimates the 
initial gradient in heat transfer by a factor of 
three (as compared to the twofold overestimate 
of 4?*)/% shown in Fig. 8). Although the 
approximation improves considerably in the 
nonlinear relaxation region further downstream 
of the leading edge and is undoubtedly useful for 
rough engineering estimates, it may well not be a 
sufficiently accurate solution for the purpose of 
the aforementioned nonequilibrium heat-transfer 
studies. 

C. Slender cones in hypersonic fEow 
To conclude the discussion of applications, 

we consider hypersonic flow over sharp cones 
with emphasis on the possibility of obtaining 
solutions by an appropriate scaling of the fore- 
going flat plate solutions. Now, under the 
conditions of small disturbance hypersonic flow 
appropriate for slender cones, the nonequili- 
brium boundary-layer behavior in the similarity 
co-ordinates is qualitatively the same as that for 
the plate. Obviously, there is an appreciable 
quantitative difference between the two at 
fixed flight velocity and wall conditions in a 
given gas because of the higher inviscid pressure 
and the Mangler factor K = 3 (instead of unity) 
pertaining to the cone. Both of these effects are 
explicitly contained in the parameter rD and 
thus simply accounted for by an appropriate 
scaling of the flat plate solution. In addition, 
however, there remain two features of the 
governing differential equations for the cone 
boundary layer which cannot be simply scaled 

t This point has also been stressed by Hartunian and 
Marrone [9] in connection with their work on measuring 
transport properties of dissociated gases by heat-transfer 
measurements in shock tube boundary layers. 
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in this manner: (a) the nonequilibrium para- 
meter derivative factor is Q = l/3 instead of 
unity; (b) the higher invsicid flow temperature 
(Te > Too> for the cone gives a higher maximum 
boundary-layer temperature and thus a larger 
nonequilibrium dissociation rate. Under small 
disturbance hypersonic flow conditions for 
slender cones, the latter effect is usually pre- 
sumed small and discarded a priori from 
similitude considerations; however, strictly 
speaking, it does remain, consistent with the 
assumption ue 2: urn, and will be evaluated 
here. The former parameter Q brings in a basic 
body shape factor for the nonequilibrium 
boundary layer in addition to the body shape 
effects that can be explicitly scaled through the 
parameter TO. 

The significance of the effects (a) and (b) can 
be appreciated from Fig. 10, where some exact 
and locally similar first-order solutions for 
a(~*) along 5 deg and 10 deg non-catalytic 
cones with a frozen inviscid flow [57] are com- 
pared with corresponding solutions for the 
flat plate. In this figure, all these solutions 
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0.6 
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would coincide if the effects (a) and (b) above 
are both negligible. A comparison of the plate 
and cone solutions for Q = 0 indicates that the 
effect of Te > Tm on the cone solutions is 
indeed small and can be neglected regardless of 
the transport parameters assumed. It is noted, 
however, that the small error involved does 
tend to grow with increasing cone angle and for 
sufficiently large values of 6 would eventually 
become significant (such that Te could no 
longer be dropped from similitude considera- 
tions). Comparison of the exact solutions for the 
cone and plate shows that the influence of the 
body shape through the factor Q has a significant 
effect on the initial gradient of a(~*) along the 
body, the first order cone solutions being 
roughly a factor of two higher than the plate 
values. Thus, under flight conditions where the 
nonequilibrium boundary layer remains nearly 
frozen over an appreciable extent of the cone, 
scaling from plate to cone according to the 
Simple rde ELI_, = rDplate Will not give 

accurate results since it significantly under- 
estimates a(~*) along the cone. By analogy 

6 = IO DEG 

G I x IOH 2 x IO” 3x10’ G 1 xi3 H 2x10’ 

r,- l- 

FIG. 10. Comparison between atom concentration solutions for a non-catalytic flat plate and slender cones. 
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with the results shown in Fig. 8, however, it is 
clear that the agreement between the exact 
cone and plate solutions is much better when a 
highly nonlinear relaxation region extends 
along much of the body; the I’D = constant 
scaling procedure is probably a reasonable 
engineering approximation under such con- 
ditions. 

It should be noted from Fig. 10 that the local 
similarity approximation for the slender cone is 
significantly better than the same approximation 
for the flat plate. This is to be expected when the 
effect of Te > Tm is very small, since the value 
of Q for the cone is closer to zero than is the 
value Q = 1 for the plate. Consequently, a 
good approximation for slender cones under all 
conditions, regardless of the transport parameter 
values, can be obtained by scaling via ELI the 
locally similar solution of the flat plate. That is, 
the solutions for T(T) and al(T) for Q = 0 at 
some distance xplate along the plate can be 
applied to any slender cone at a distance along 
the cone given by 

3 
Gone 2: (pelE)OO)eone Xplste (41) 

for a given gas at fixed velocity, wall temperature 
and catalycity, and ambient gas composition. 
In h~ersonic flow where pe/pm > 3 (which is 
usually the case of interest), a shorter distance 
along the cone than along the plate is thus 
required to reach a given dissociation level. 

V. SUMMARY 

In this paper, a family of analytical solutions 
has been given for nonequi~brium boundary- 
layer flow of a four-component dissociating gas 
mixture, assuming small departures from frozen 
flow behavior and either a completely catalytic 
or perfectly non-catalytic body surface. Both 
recombination rate and dissociation rate con- 
trolled flow situations are included. Specific 
applications of the theory were discussed in 
some detail for highly cooled, self-similar 
stagnation point flow on blunt axisymmetric 
bodies and for the case of highly dissipative, 
non-similar boundary layers aIong a sharp flat 
plates and sfender cones. 

For the stagnation point flow, it was shown 
that formulation of the nonequilibrium chemical 

kinetics in air according to the binary “air 
atom-air molecule” approximation can over- 
estimate the controlling gas phase recombination 
rate for the total atom concentration by a factor 
of two when an appreciable fraction of nitrogen 
as well as oxygen atoms exists at the edge 
of the boundary layer. A simple method of 
correcting these binary gas model solutions to 
account for the multicomponent mixture effects 
present in highly nonequilibrium-dissociated 
air was given. For highly cooled wails, it was 
also shown that the nonequilibrium heat transfer 
to a non-catalytic surface is quite sensitive to 
the value of the recombination rate temperature 
dependence exponent. This suggests that dif- 
ferential catalytic-non-catalytic heat-transfer 
measurements on nonequi~ibrium stagnation 
point boundary layers might be used to evaluate 
this exponent. 

Examination of the flat plate and slender cone 
solutions brought out a number of important 
conclusions. First, in sharp contrast to the 
case of stagnation point flows, the surface 
catalycity was shown to have an altogether 
negligible influence on the effect of the gas 
phase reaction rate unless the boundary layer 
is rather close to complete equilibrium. Second, 
local similarity solutions were found to be 
reasonable engineering approximations for the 
flat plate when nonlinear relaxation effects 
predominate but were found to be poor approxi- 
mations in regions where the boundary layer is 
nearly frozen. In contrast, local similarity 
yields fairly accurate results under all conditions 
for the case of slender cones. Third, the non- 
equilibrium boundary-layer solutions for both 
the plate and cone were shown to be very 
sensitive to the transport property parameters, 
as evidenced by the fact that the nearly frozen 
maximum atom concentrations decrease by an 
order of magnitude when Pp. and SC are changed 
from unity to 0.70 and O-50, respectively. This 
result is in marked contrast to what is observed 
for recombination rate-controlled, nonequili- 
brium boundary layers such as at a stagnation 
point. Thus, it was concluded that a fairly 
detailed consideration of the transport pro- 
perties across the boundary layer must be made 
to obtain solutions of acceptable engineering 
accuracy for dissociation rate-controlled flows. 
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Finally, a simple and unified nonequilibrium 
boundary-layer binary scaling law was demon- 
strated for plates and slender cones with a small 
disturbance hypersonic inviscid flow. This 
law provides that under conditions of fixed 
flight velocity, wall temperature, surface cata- 
lycity and free stream composition, the non- 
equilibrium properties across the boundary- 
layer scale along the body according to the 
simple rule (pe/pm) [x/(1 + 26)] = constant. 
Thus, the effect of changing altitude on either 
the plate or cone solutions is easily evaluated, 
and solutions for slender cones are simply 
obtained from the flat plate by an appropriate 
local scaling of distance along the body. 
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R&urn&-Des solutions analytiques sont pr&ent&es pour une famille ~~ulements du type couche 
limite d’un melange gazeux dissoci& de quatre constituants tr& Cloign& de l’equilibre (presque fig&) 
autour d’obstacles sans abIation avec une surface soit compl&tement catafytique soit parfaitement 
non-catalytique. A la fois, des tioulements en similitude et sans similitude locale sont Studies pour 
des cas contr816s soit, par la vitesse de recombinaison, soit, par la vitesse de dissociation. Le com- 
portement d’une couche limite en dehors de l’ciquilibre, en tenant compte de la sensibilite aux diffb 
rentes don&es de la cinCtique chimique et aux param&res de transport, est consid&& en d&ail pour 
des &oulements au point d’arr& d’obstacles arrondis fortement refroidis et des koulement hyperso- 
niques sur des plaques planes & bord aigu et des tines Clan&. 

La p&&ion de l’approximation de la similitude locale et I’emploi de iois d’&chelte dans le cas 
binaire en d6hors de l’tquilibre sont examin& Cgalement pour Ies Ccoulements sur une plaque et sur 

un cane. 
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Zusannnenfassung-Analytische Losungen werden vorgelegt ftir eine Gruppe von Grenzschichtstro- 
mungen, die aus einem dissoziierten Gasgemisch mit vier Komponenten bestehen und sich weit 
ausserhalb des Gleichgewichtzustandes befinden. Sie erfolgen urn Korper mit einer entweder vollkom- 
men katalytischen oder vollkommen nicht-katalytischen Oberflkhe. Die Korper sind so ausgebildet, 
dass sich die Stromung nicht ablest. Sowohl lhnliche als such ortlich verschiedene Stromungen werden 
untersucht ftir Zustande, in denen entweder die Vereinigungsrate oder die Dissoziationsrate vor- 
herrscht. Das Verhalten der Grenzschichten ausserhalb des Gleichgewichtes, einschliesslich der 
Empfindlichkeit gegeniiber verschiedener chemisch-kinetischer Werte und Parameter fur die Trans- 
porteigenschaften?. wird in Einzelheiten fur stark gekiihlte Stromungen am Staupunkt stumpfer 
Korper und fur Uberschallstromungen iiber scharfe flache Platten und schlanke Kegel betrachtet. 
Die Genauigkeit der Grtlichen Ahnlichkeitsnaherung und die Anwendung der Gesetze fur Zweistoff- 
gemische ausserhalb des Gleichgewichtes werden ebenfalls fur die Platten- und Kegelstromung gepriift. 

AnnoTaqaa-S CTaTbe AaIOTCR aHaJIMTWIeCKIIe peIIIeHIW AJUI HeKOTOpbIX BeCbMa HepaBHO- 

BeCHbIX(IIOqTLI 3aMOpOHEeHHbIX)~eTbIpeXKO~~OI~eHTHbIX~~CCO~ll~pO~aIIIIbIXra30BbIXC~IeCe~ 

B IIO~~~HIWII~M woe nealirmpyromux Te:r c ~OJIII~CTLIO KaTanIiTwrecKoir II.~I~ coseprrrerIIi0 

HeKaTaJIHTasecKoti noBepxIIocTbw. PaCCMaTpIIBaIOTCH KaK aIlTOMOAeZLHbIe, TaIi II JIOKaJIbIIO 

HeaBTOMOAeJIbHbIe TeYeHUIR AJIFI CJIyqaeB, KOl?Aa OIIpe~e;IHlOII@i FIBJIHeTCJI JIIi60 CKOpOCTb 

peKOM6kiHaqIill, JIH60 CKOpOCTL AIICCO~Ha~MkI. II~HBOAETC~I no~po61sIti aHann IIepaeKoBe- 

c~oro norpaHavrIor0 c~1025, BKJIIOYaFOII@ er0 3aBHCGIMOCTb OT pa3JIWEHbIX XMMLIKO- 

KEIHeTIIYeCKHX IIapaMeTpOB M KO3$N.@4IIHeHTOB IIepeHOCa IIpAMeHMTeJIbHO K 3aaaYaM EiIITeH- 

CHBHO OXJIa2qaeMOti KpnTWIeCKOti TOYIiIZ TyIIbIX TeJI H IWIIep3ByKOBbIX o6TeKarInt nnOCK0~ 

IIJIaCTMHbI II XJIIiHHbIX KOHyCOB. AJIFI IIJIaCTMHbI M KOHyCa 06cyltcaaIoTcsI BOIIpOChI TOWIOCTH 

npIi6nn?KeHI?i JIOKaJIbHOrO IIOAO6IlFI II HepaBHOI3eCHOCTLI. 


